/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "dma.h" #include "i2c.h" #include "spi.h" #include "tim.h" #include "usart.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include #include #include "retarget.h" #include "oled.h" #include "esp8266.h" #include "OneNet.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ extern unsigned short esp8266_cnt; extern unsigned char esp8266_buf[128]; volatile uint32_t systick_1ms = 0; char flag_1s = 0; char flag_2s = 0; char flag_5s = 0; uint8_t* UART1_RxData[40]; uint8_t UART2_RxData; uint8_t rf_status; uint8_t rf_card_type[3]; uint8_t rf_card_id[5]; uint8_t rf_data[16]; char IC_CARD_ID[16]; uint8_t ADDR = 0x01 * 4 + 0x03; uint8_t KEY_A[6]= {0xff,0xff,0xff,0xff,0xff,0xff}; uint8_t KEY_B[6]= {0xff,0xff,0xff,0xff,0xff,0xff}; const char* SEP = "-------------------------\r\n"; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); void MX_FREERTOS_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_I2C1_Init(); MX_SPI1_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_TIM1_Init(); MX_TIM3_Init(); /* USER CODE BEGIN 2 */ // Retarget uart // RetargetInit(&huart1); // Init OLED OLED_Init(); OLED_Clear(); // HAL_TIM_Base_Start_IT(&htim1); // HAL_TIM_Base_Start_IT(&htim3); // Init RC522 // MFRC_Init(); // PCD_Reset(); HAL_UARTEx_ReceiveToIdle_IT(&huart1, (uint8_t*)UART1_RxData, 40); HAL_UART_Receive_IT(&huart2, &UART2_RxData, 1); /* USER CODE END 2 */ /* Init scheduler */ osKernelInitialize(); /* Call init function for freertos objects (in cmsis_os2.c) */ MX_FREERTOS_Init(); /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { // RC522_ProcessStateMachine(&rc522Handle); // // if (rc522Handle.state == RC522_STATE_IDLE && rc522Handle.status == PCD_OK) // { // // Example: Display card information when idle and successful // OLED_ShowString(0, 0, "Card ID:", 12); // char buffer[16]; // snprintf(buffer, sizeof(buffer), "%02X-%02X-%02X-%02X", rc522Handle.cardID[0], rc522Handle.cardID[1], rc522Handle.cardID[2], rc522Handle.cardID[3]); // OLED_ShowString(36, 0, buffer, 12); // } // if (onenet_state()) // { // OLED_ShowString(0,0,"OneNet online ",12); // HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET); // } // else // { // OLED_ShowString(0,0,"OneNet offline ",12); // HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_SET); // } // IM_ReadFlag = 1; //抄读标志 // IM_Read(); // // HAL_Delay(500); // // OneNet_SendData(); // HAL_Delay(500); // ESP8266_Clear(); // // Display_IM1281B(); // rf_status = PCD_Request(PICC_REQALL, rf_card_type); // // if (!rf_status) { // rf_status = PCD_ERR; // HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_SET); // rf_status = PCD_AntiColl(rf_card_id); // } // // if (!rf_status) { // rf_status = PCD_ERR; // // OLED_ShowString(0, 2, "Typ:", 12); // uint8_t card_type_buffer[9]; // snprintf(card_type_buffer, sizeof card_type_buffer, "%02X %02X %02X", rf_card_type[0], rf_card_type[1], rf_card_type[2]); // OLED_ShowString(38, 2, card_type_buffer, 12); // // OLED_ShowString(0, 4, "ID :", 12); // uint8_t card_id_buffer[12]; // snprintf(card_id_buffer, sizeof card_id_buffer, "%02X-%02X-%02X-%02X", rf_card_id[0], rf_card_id[1], rf_card_id[2], rf_card_id[3]); // OLED_ShowString(36, 4, card_id_buffer, 12); // // rf_status = PCD_Select(rf_card_id); // } // // if (!rf_status) { // rf_status = PCD_ERR; // rf_status = PCD_AuthState(PICC_AUTHENT1A, ADDR, KEY_A, rf_card_id); // rf_status = PCD_AuthState(PICC_AUTHENT1B, ADDR, KEY_B, rf_card_id); // } // // if(rf_status == PCD_OK) // { // rf_status = PCD_ERR; // rf_status = PCD_ReadBlock(ADDR, rf_data); // // HAL_GPIO_WritePin(LED0_GPIO_Port, LED0_Pin, GPIO_PIN_RESET); // HAL_Delay(3000); // } /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ // void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim){ // if(htim->Instance == TIM1){ // KeyScan(); // } // else if (htim->Instance == TIM3) // { // if (ONENET_CONNECTED) // { // dataPtr = ESP8266_GetIPD(0); // if (dataPtr != NULL) // { // OneNet_RevPro(dataPtr); // } // } // } // } void HAL_UARTEx_RxEventCallback(UART_HandleTypeDef *huart, uint16_t Size) { if (huart == &huart1) { // assign the received data to the IM_RxBuf if (Size >= sizeof(UART1_RxData)) { Size = sizeof(UART1_RxData) - 1; } // IM_RecvLen = Size; memcpy(IM_RxBuf, UART1_RxData, Size); IM_RecvLen = Size; IM_RecvDone = 1; // IM_Analyze(); HAL_UARTEx_ReceiveToIdle_IT(&huart1, (uint8_t*)UART1_RxData, 40); } } void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart) { if (huart == &huart2) { if (esp8266_cnt >= sizeof(esp8266_buf)) { esp8266_cnt = 0; } esp8266_buf[esp8266_cnt++] = UART2_RxData; HAL_UART_Receive_IT(&huart2, (uint8_t *)&UART2_RxData, 1); } } /* USER CODE END 4 */ /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM4 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ // if(htim->Instance == TIM1) // { // systick_1ms++; // // if(systick_1ms % 1000 == 0) { // flag_1s = 1; // // static uint8_t cnt_2s = 0; // if(++cnt_2s >= 2) { // cnt_2s = 0; // flag_2s = 1; // } // // static uint8_t cnt_5s = 0; // if(++cnt_5s >= 5) { // cnt_5s = 0; // flag_5s = 1; // } // } // } /* USER CODE END Callback 0 */ if (htim->Instance == TIM4) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ if (htim->Instance == TIM4) { if (uwTick % 1000 == 0) { flag_1s = 1; static uint8_t cnt_2s = 0; if (++cnt_2s >= 2) { cnt_2s = 0; flag_2s = 1; } static uint8_t cnt_5s = 0; if (++cnt_5s >= 5) { cnt_5s = 0; flag_5s = 1; } } } /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { OLED_ShowString(0, 0, "ERROR", 16); HAL_GPIO_TogglePin(LED0_GPIO_Port, LED0_Pin); uint16_t i = 7200; while (i--) {} } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */